Paper / Subject Code: 51401 / Applied Mathematics-III

14-Nov-2019 1T01223 - S.E.(Information Technology Engineering)(Choice Base) / 51401 - Applied Mathematics-III 76566

[Time: 3 Hours] [Marks:80] Please check whether you have got the right question paper. N.B: 1. O 1 is compulsory. 2. Attempt any three from remaining 3. Rights indicate full marks. a. If A, B, C are subset of universal set V then prove that A × (B ∩ C)=(A × B) ∩ (A × C) 05 b. If f: R \rightarrow R is given by y = 2x + 1, prove that f is one to one and onto and find f^{-1} 05 c. Find L $\{(1 + t\bar{e}^t)^3\}$ 05 d. Check whether the following function Harmonic or not $3x^2 + sinx + y^2 + 5y + 4$ 05 2. a. Find k if f(z) = $\frac{1}{2} \log (x^2 + y^2) + i \tan^{-1} \frac{kx}{y}$ is analytic 06 b. Find L {|sin2t|} 06 c. Let f: $R \to R$ $f(x) = x^2 + 2x - 1$ 08 g: $R \rightarrow R$ g(x) = $4x^2+2$ Find (I) f 0 (gof) (II) go (fog) a. Find Bilinear transformation under which Z=1, -i, -1 from point w =i, 0, -i 06 b. If A be the set of non-integers and let R be a relation on A×A defined by (a, b) R(c, d) if 06 ad=bc, then prove that R is an equivalence relation. c. Find (1) L $\left\{ \int_{0}^{t} \bar{e}^{u} \frac{\sin u}{u} du \right\}$ 08 (2) L $\{(1+2t+3t^2+t^3)H(t-2)\}$ a. Use convolution them and evaluate 06 $L^{-1}\left\{\frac{(s+5)^2}{(s^2+10s+16)^2}\right\}$

c. A man speaks truth 3 times out of 5 when a die is thrown he states that it gave an ace what is probability that this event has actually happened.

b. Find transitive clouser of following relation defined on $A = \{a, b, c, d, e\}$ by Warshal 06

algorithm $R = \{(a, a) (a, b) (b, c) (c, d) (c, c) (d, e)\}$

- 5. a. How many four digit numbers can be formed out of the digits 1, 2, 3, 5, 7, 8, 9 if no digit is **96** repeated twice? How many of them will be greater than 3000.
 - b. Solve using Laplace transform $\frac{d^2y}{dt^2} + 9y = 18 \text{ given that } y(0) = 0 \text{ and } y(\frac{\pi}{2}) = 0$

08

- c. Evaluate (1) $L^{-1} \left\{ \frac{1}{\sqrt{2s+1}} \right\}$ (2) $L^{-1} \left\{ \frac{2s^2 6s + 5}{s^3 6s^2 + 115 6} \right\}$
- **6.** a. Solve $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - b. Find orthogonal curves of family of curves $e^{-x} \cos y + xy = \alpha$, where α is the real constant 06
 - c. i. Find the image of rectangular region bounded by x=0, x=3, y=0, y=2 under the transformation w=z+(1+i)
 - ii. A fair dice is thrown thrice. Find probability that sum of numbers obtained is 10.
